

Portrait of a CMMI Level 4 Effort

Doug Smith & Craig Hollenbach
Litton/PRC

Litton PRC - A Leader in Systems Integration and Information Technology

- Headquarters in McLean, VA
- Over 80 offices worldwide
- "Top 5" systems integrator
- Subsidiary of Litton Industries
- 5500 employees

- SW-CMM L2: 12/95 (site)
- SW-CMM L3: 6/96 (sector), 6/99 (PRC)
- SW-CMM L5: 3/00 (PRC)
- ISO 9000/9001/9003 Registered

Sample PRC Systems Integration Programs

AWIPS

- Value: \$350M
- Customer: DOC/NWS
- Open Systems development of satellite weather data sys
- Satellite station keeping, data download and distrib.
- COTS, GOTS & re-use

Development & Operation of Advanced Weather Information Processing Satellite Distribution System

ITN

- Value: \$60M
- Customer: Dept of Justice
- Development of automated fingerprint ID Network
- 1,500 workstations and servers: 2M SLOC
- Open system

Identification, Tasking and Networking (ITN) will enable FBI to provide fingerprint ID nationwide

SSD

- Value: \$120M
- Customer: AFMC/SSSG
- Sustaining Engineering, S/W Maint, & logistics support
- ITW/AA Sensors (BMEWS, PARCS, PAVE PAWS, GEODSS, Have Stare, etc)
- SEI 3 Team Capability

Sensor Support Division for mechanical & phasedarray radars & optical sensors

JEDMICS

- Value: \$200M
- Customer: DoD
- Document Imaging,Storage& MIS System
- 1994 Federal Mgmt Award
- >35 Systems installed

Joint Engineering Data Management Information Control System for engineering data repositories

The 6 Parts of CMMI Level 4

CMMI L4 Requirements

SG 1 Establish Perf. Baselines & Models

- **SP 1.1 Select Processes**
- SP 1.2 Establish Process Performance Measures
- SP 1.3 Establish Quality and Process Performance Objectives

Quantitative Project Management (QPM)

SG 1 Quantitatively Manage the Project

- SP 1.1 Establish the Project's Objectives
- **SP 1.2 Compose the Defined Process**
- SP 1.3 Select the Subprocesses to be Managed

SG 2 Statistically Manage Subprocess Performance

SP 2.1 Select Measures and Analytic Techniques

1. Establish Quality and Process Performance Objectives and Measures

★ CMMI Requirements

- OPP SP 1.1 Select Processes
- OPP SP 1.2 Establish Process Performance Measures
- OPP SP 1.3 Establish Quality and Process Performance Objectives

★ PRC Implementation:

FY00 PRC Objectives

3.1 Analyze customer satisfaction survey results. Introduce sector wide process change and standardization to improve product delivery and customer satisfaction.

PRC Process Performance Objectives

- Achieve Cost Performance Index (monthly) (CPIm) = 1 ±0.1.
- 2. Achieve Schedule Performance Index (monthly (SPIm) = 1 ± 0.1 .
- 3. Achieve ETC Performance Variance Percentage (monthly) (EPVPm) = 0 ± 0.1 .
- 4. Achieve 10% improvement in DD specifications for each life cycle phase.

Defect Density (by review) Definition (ID: DDr)

Value Type and Characteristics

	Type	Ch	aracteristics
M	Measured (M) or Calculated (C)	Units:	Critical defects
С	Core (C) or Supplementary (S)	Range:	>= 0
	(L4 standard)	Goal:	<2 critical dpp
	T	3 sigma	

The definition of defects deemed "critical" is locally defined, usually in configuration management or software development plans, but is based on guidance from the Metrics Handbook. Generally, a critical defect prevents completion of the system mission, jeopardizes safety or security, has an adverse effect on essential capability with no work-around, or is a Peer Review "showstopper".

Purpose/Goal

Defect Density (by review) (D and indirectly, of review effect the PRC Peer Review process Inspection process.

DDr is employed when the g

Definition

The general definition of DD Defects are generally categor calculated with just unique "often consists of comparing the defects.

Ac	cronym	Measurement	Process
CF	Plm	Cost Performance Index monthly	Earned Value System
s: DE	Db	Defect Density for CM Build from Test	Test
g DE	Dr	Defect Density from Peer Review	Peer Review
DE	Ds	Defect Discovery from Test	Test
DE	Dt	Defect Density from Test	Test
r EF	PVPm	ETC Performance Variance Percentage monthly	Earned Value System or other financial process
SF	Plm	Schedule Performance Index monthly	Earned Value System

Product size is measured in physical pages or source lines of code (SLOC).

2. Establish the Project's Objectives and Select Subprocesses to Measure

★ CMMI Requirements

- QPM SP 1.1 Establish the Project's Objectives
- QPM SP 1.2 Compose the Defined Process
- QPM SP 1.3 Select the Subprocesses to be Managed

★ PRC Implementation:

Defect Density (DDb

Projects tailor PRC plan and address project "points of pain"

Quantitative Management Objectives							
Project Performance							
Cost							
Cost Performance Index (CPI)	Achieve CPI = 1 ± 0.1						
Estimate to complete (ETC) performance	Achieve EPVPm = 0 ± 0.1						
(monthly) (EPVPm)							
Schedule	5.						
Schedule Performance Index (SPI)	Achieve SPI = 1 ± 0.1						
SIT Schedule Performance Index	Achieve SPI = 1 ± 0.1						
SwIT Predicted End Date	Predict end date \pm 20% by 40% of planned						
Product	Quality						
Reliability (Releases to test)							

Achieve DDb = $.001 \pm .0005$

3. Select Measures and Analytic Techniques

- ★ CMMI Requirements
 - SP 2.1 Select Measures and Analytic Techniques
- **★** PRC Implementation:

Defect Density (by build) Definition (ID: DDb)

Value Type and Characteristics

	<i>3</i> 1									
	Type	Characteristics								
M	Measured (M) or Calculated (C)	Units:	Critical defects							
C	Core (C) or Supplementary (S)	Range:	>= 0							
	(L4 standard)	Goal:	<2 critical dpp							
	T	3 sigma								

Interpretation

Purpose/Goal

Defect Density by build (DDb) is a primary (although indirect) indicator of product quality. Defects are inserted by building and releasing a portion of the product prior to testing and discovered by testers. DDb is generally

Statistical Process Control (SPC)

- Most projects use XmR SPC charts to derive limits and analyze data
- Some projects use X-bar-r charts & Rayleigh curve fits
- Data plotted chronologically
- Limits based on variability within data set; reset when process changes
- Used 6 rules for determining special causes of variation

4. Monitor Performance of Selected Subprocesses

★ CMMI Requirements

- SP 2.2 Apply Statistical Methods to Understand Variation
- SP 2.3 Monitor Performance of the Selected Subprocesses
- SP 2.4 Record Statistical Management Data
- ★ PRC Implementation: Project Control Chart DDb

5. Manage Project Performance

★ CMMI Requirements

- SP 1.4 Manage Project Performance
- **★** PRC Implementation:
 - Monitor project"points of pain"
 - PPBL by life cycle phases

Quantitative Management Objectives									
Project Performance									
Cost									
Cost Performance Index (CPI)	Achieve CPI = 1 ± 0.1								
Estimate to complete (ETC) performance	Achieve EPVPm = 0 ± 0.1								
(monthly) (EPVPm)									
Schedule									
Schedule Performance Index (SPI)	Achieve SPI = 1 ± 0.1								
	Achieve SPI = 1 ± 0.1								
Produc	t Quality								
Quality									
Defect Density - Peer Review (DDr)	Achieve DDr = $.02 \pm .002$								
Defect Density – Test (DDt)	Achieve DDt = .0005 ± .00005								

Project Process Performance Baseline										
Life Project's Specification						Project's				
Cycle	Measured		from Project					Collecting		
Phase	Process ID	Measure	QM Plan	Mean	UCL	LCL	Units	Process ID		
Analysis	PEM100	DDr	$.02 \pm .002$	1.0170	3.6765	-1.6426	Pages	PR100		
Pdesign	PEM200	DDr	$.02 \pm .002$	0.3518	1.0944	-0.3908	Pages	PR100		
Cdesign	PEM300	DDr	$.02 \pm .002$	0.3837	1.6263	-0.8588	Pages	PR100		
Code	PEM400	DDt	$.0005 \pm .00005$	3.8824	17.2873	-9.5225	KSLOC	PR200		
Test	PEM500	DDr	$.0005 \pm .00005$	0.3168	1.1674	-0.5339	Pages	PR100		
Test	PEM500	DDt	$.0005 \pm .00005$	0.0604	0.3247	-0.2040	Req't	PEM500		
Ops	PEM600	DDt	$.0005 \pm .00005$	0.0729	0.2960	-0.1502	Req't	PEM600		
Ops	PEM700	DDt	.0005 ± .00005	0.0526	0.2970	-0.1918	Req't	PEM700		

6. Establish Process Performance Baselines and Models

★ CMMI Requirements

- SP 1.4 Establish Process Performance Baselines
- SP 1.5 Establish Process Performance Models

★ PRC Implementation:

- Organizational Process Performance Baseline
- Defect Density by Life Cycle Phase model
- Rayleigh Defect Detection model

Organizational Performance Baseline

Product Quality					Baseline 2.2			Baseline 2.0			Change				
Phase	Measured	Process	Measure	Units	Spec	Mean	UCL	LCL	Mean	Mean UCL LCL		Mean	CL		
Analysis	PE2310	Software Requirements Analysis	DDr	Pages	0.780	0.710	3.369	0	0.709			0%			
PDesign	PE3110	Preliminary Software Design	DDr	Pages	0.375	0.341	3.000	0	0.341			0%			
CDesign	PE3210	Detailed Software Design	DDr	Pages	0.287	0.316	2.975	0	0.261	1.314	0.000	21%	-158%		
Design	PE3110, PE3210	Preliminary Software Design, Detailed Software Design	DDr	Pages	0.739	0.655	2.599	0	0.672	2.532	0.000	-2%	-4%		
			DDr	SLOC	0.004	0.005	1.187	0	0.004			47%			
Code	PE4110	CSU Code	DDt	KSLOC	6.930	3.204	14.885	0	6.300			-49%			
			DDt	Reqts	4.047	3.882	17.287	0	3.679			6%			
	PE5110, PE5210, PE5300	CSC Integration and Test, CSCI Integration and Test, System Integration and Test	DDr	Pages	0.379	0.356	1.783	0	0.421					15%	
Test	PE000	Product Engineering Macro	DDt	KSLOC	0.060	0.362	2.316	0	0.067			-443%			
rest			DDt	Reqts	0.125	0.059	1.687	0	0.139			57%			
	PE5110, PE5210, PE5300	CSC Integration and Test, CSCI Integration and Test, System Integration and Test	DDb	Files	0.0002	0.0002	0.002	0	0.0002	0.002	0.000	0%	0%		
0	PE000	Product Engineering Macro	DDt	KSLOC	0.047	0.218	2.877	0	0.053	0.297	0.000	-315%	-1056%		
Ops			DDt	Regts	0.036	0.048	2.707	0	0.040	0.233	0.000	-19%	-1287%		
Non-LC	PE4110	CSU Code	DDr	Pages	0.960	0.484	1.466	0	1.067	3.078	0.000	55%	80%		
Phase	Measured	Process	Measure	Units	Spec	Mean	Max	Min	Mean	Max	Min	Mean	Max		
Test	PE5110, PE5210, PE5300	CSC Integration and Test, CSCI Integration and Test, System Integration and Test	DDs	% defects	2.0	1.177	5.525	-0.354	1.177	5.525	-0.354	0%	0%		
Process Performance															
Phase	Phase Measured Process		Measure	Units	Spec	Mean	UCL	LCL	Mean	UCL	LCL	Mean	CL		
	PP000, F		EPVPm		0 <u>+</u> .1	0.133	0.532	-0.266	0.105	0.482	-0.272	-27%	-13%		
	PT000,		CPIm		1 <u>+</u> .1	0.977	1.840	0.115	1.147	1.515	0.779	-15%	-88%		
	F 1000		SPIm		1 + .1	0.980	1.641	0.319	1.004	1.272	0.736	-2%	-138%		

Copyright © 2000 PRC Inc.

Organizational Baseline Analysis

Rayleigh Curves

PRC L4 CMMI Experience

- ★ Statistical methods can be applied to a variety of process area 'subprocesses.'
- ★ Statistical analysis provides direct and substantial benefit to projects.
- ★ Organizational business goals and project 'points of pain' best determine which process areas and subprocesses to bring under quantitative and statistical control.
- ★ Statistical analysis can be performed by less mature projects.
- ★ Data analysis is challenging for organizations with different project environments.